Pulse-coupled BZ oscillators with unequal coupling strengths.

نویسندگان

  • Viktor Horvath
  • Daniel J Kutner
  • John T Chavis
  • Irving R Epstein
چکیده

Coupled chemical oscillators are usually studied with symmetric coupling, either between identical oscillators or between oscillators whose frequencies differ. Asymmetric connectivity is important in neuroscience, where synaptic strength inequality in neural networks commonly occurs. While the properties of the individual oscillators in some coupled chemical systems may be readily changed, enforcing inequality between the connection strengths in a reciprocal coupling is more challenging. We recently demonstrated a novel way of coupling chemical oscillators, which allows for manipulation of individual connection strengths. Here we study two identical, pulse-coupled Belousov-Zhabotinsky (BZ) oscillators with unequal connection strengths. When the pulse perturbations contain KBr (inhibitor), this system exhibits simple out-of-phase and complex oscillations, oscillatory-suppressed states as well as temporally periodic patterns (N : M) in which the two oscillators exhibit different numbers of peaks per cycle. The N : M patterns emerge due to the long-term effect of the inhibitory pulse-perturbations, a feature that has not been considered in earlier works. Time delay was previously shown to have a profound effect on the system's behaviour when pulse coupling was inhibitory and the coupling strengths were equal. When the coupling is asymmetric, however, delay produces no qualitative change in behaviour, though the 1 : 2 temporal pattern becomes more robust. Asymmetry in instantaneous excitatory coupling via AgNO3 injection produces a previously unseen temporal pattern (1 : N patterns starting with a double peak) with time delay and high [AgNO3]. Numerical simulations of the behaviour agree well with theoretical predictions in asymmetrical pulse-coupled systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Modeling of Neural Circuit-Like Coupled Belousov-Zhabotinsky Reactions

Computational Modeling of Neural Circuit-Like Coupled Belousov-Zhabotinsky Reactions A thesis presented to the Interdepartmental Program in Neuroscience. Graduate School of Arts and Science Brandeis University Waltham, Massachusetts By Alexander Mitchell We seek to adapt simplified circuit models of neural central pattern generators (CPGs) for use in a system of chemical oscillators using the B...

متن کامل

Pulse-coupled chemical oscillators with time delay.

Finger on the pulse: in a system of two pulse-coupled Belousov-Zhabotinsky oscillators, introducing a time delay or increasing the coupling strength brings about novel dynamic features (see picture, the two oscillators are shown in different colors), such as reversal of the roles of excitatory and inhibitory coupling or fast anti-phase oscillation. These features are not observed in diffusively...

متن کامل

Controlling Coupled Chemical Oscillators: Toward Synchronization Engineering and Chemical Computation

The collective behaviors of coupled oscillators are ubiquitous in biological systems, with examples including quorum sensing, cardiac muscle contractions, and networks of neurons. In an effort to better understand the generic properties of such oscillators, we investigated emulsions of diffusively coupled microdroplets containing the oscillatory Belousov—Zhabotinsky (BZ) reaction with a photo-i...

متن کامل

Chimera and Phase Cluster States in Populations of Coupled Chemical Oscillators

Populations of coupled oscillators may exhibit two coexisting subpopulations, one with synchronized oscillations and the other with unsynchronized oscillations, even though all of the oscillators are coupled to each other in an equivalent manner. This phenomenon, discovered about ten years ago in theoretical studies by Kuramoto and Battogtokh [1], was further characterized by Abrams and Strogat...

متن کامل

Pulse Wave Propagation in a Large Number of Coupled Bistable Oscillators

A simple model of inductor-coupled bistable oscillators is shown to exhibit pulse wave propagation. We demonstrate numerically that there exists a pulse wave which propagates with a constant speed in comparatively wide parameter region. In particular, the propagating pulse wave can be observed in non-uniform lattice with noise. The propagating pulse wave can be observed for comparatively strong...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 2015